目录
144. 二叉树的前序遍历 Binary-tree Preorder Traversal 🌟
145. 二叉树的前序遍历 Binary-tree Postorder Traversal 🌟
对比: 94. 二叉树的中序遍历 Binary-tree Inorder Traversal 🌟
146. LRU缓存 LRU Cache 🌟🌟
🌟 每日一练刷题专栏 🌟
Golang每日一练 专栏
Python每日一练 专栏
C/C++每日一练 专栏
Java每日一练 专栏
二叉树专题(9)第146题除外
144. 二叉树的前序遍历 Binary-tree Preorder Traversal
给你二叉树的根节点 root
,返回它节点值的 前序 遍历。
示例 1:
输入:root = [1,null,2,3] 输出:[1,2,3]
示例 2:
输入:root = [] 输出:[]
示例 3:
输入:root = [1] 输出:[1]
示例 4:
输入:root = [1,2] 输出:[1,2]
示例 5:
输入:root = [1,null,2] 输出:[1,2]
提示:
- 树中节点数目在范围
[0, 100]
内 -
-100
进阶:递归算法很简单,你可以通过迭代算法完成吗?
公用的示例二叉树:
3 / 9 20 / 15 7
遍历结果:
前序遍历 preorder = [3,9,20,15,7] 中序遍历 inorder = [9,3,15,20,7] 后序遍历 postorder = [9,15,7,20,3]
代码1: 递归
package main
import (
"fmt"
)
const null = -1
代码2: 迭代
package main
import (
"fmt"
)
const null = -1 0 {
cur := stack[len(stack)-1]
stack = stack[:len(stack)-1]
res = append(res, cur.Val)
if cur.Right != nil {
stack = append(stack, cur.Right)
}
if cur.Left != nil {
stack = append(stack, cur.Left)
}
}
return res
}
func buildTree(nums []int) *TreeNode {
if len(nums) == 0 {
return nil
}
root := &TreeNode{Val: nums[0]}
Queue := []*TreeNode{root}
idx := 1
for idx
输出:
[1,2,3]
[3,9,20,15,7]
145. 二叉树的后序遍历 Binary-tree Postorder Traversal
给你一棵二叉树的根节点 root
,返回其节点值的 后序遍历 。
示例 1:
输入:root = [1,null,2,3] 输出:[3,2,1]
示例 2:
输入:root = [] 输出:[]
示例 3:
输入:root = [1] 输出:[1]
提示:
- 树中节点的数目在范围
[0, 100]
内 -100
进阶:递归算法很简单,你可以通过迭代算法完成吗?
代码1: 递归
package main
import (
"fmt"
)
const null = -1
代码2: 迭代
package main
import (
"fmt"
)
const null = -1 0 {
cur := stack[len(stack)-1]
stack = stack[:len(stack)-1]
res = append([]int{cur.Val}, res...)
if cur.Left != nil {
stack = append(stack, cur.Left)
}
if cur.Right != nil {
stack = append(stack, cur.Right)
}
}
return res
}
func buildTree(nums []int) *TreeNode {
if len(nums) == 0 {
return nil
}
root := &TreeNode{Val: nums[0]}
Queue := []*TreeNode{root}
idx := 1
for idx
输出:
[3,2,1]
[9,15,7,20,3]
对比: 94. 二叉树的中序遍历 Binary-tree Inorder Traversal
给定一个二叉树的根节点 root
,返回 它的 中序 遍历 。
示例 1:
输入:root = [1,null,2,3] 输出:[1,3,2]
示例 2:
输入:root = [] 输出:[]
示例 3:
输入:root = [1] 输出:[1]
提示:
- 树中节点数目在范围
[0, 100]
内 -100
进阶: 递归算法很简单,你可以通过迭代算法完成吗?
代码1: 递归法
package main
import (
"fmt"
)
const null = -1
代码2: 迭代法
package main
import (
"fmt"
)
const null = -1 0 {
for cur != nil {
stack = append(stack, cur)
cur = cur.Left
}
cur = stack[len(stack)-1]
stack = stack[:len(stack)-1]
res = append(res, cur.Val)
cur = cur.Right
}
return res
}
func buildTree(nums []int) *TreeNode {
if len(nums) == 0 {
return nil
}
root := &TreeNode{Val: nums[0]}
Queue := []*TreeNode{root}
idx := 1
for idx
输出:
[1,3,2] [9,3,15,20,7]
三种遍历的递归对比
“根左右、左根右、左右根”
func preorder(root *TreeNode, res *[]int) {
*res = append(*res, root.Val)
preorder(root.Left, res)
preorder(root.Right, res)
}
func inorder(root *TreeNode, res *[]int) {
inorder(root.Left, res)
*res = append(*res, root.Val)
inorder(root.Right, res)
}
func postorder(root *TreeNode, res *[]int) {
postorder(root.Left, res)
postorder(root.Right, res)
*res = append(*res, root.Val)
}
三种遍历的迭代对比
注意左、右子节点的压栈顺序,以及后序结果中的“追加”实为“前插”
func preorderTraversal(root *TreeNode) []int {
var res []int
if root == nil {
return res
}
stack := []*TreeNode{}
stack = append(stack, root)
for len(stack) > 0 {
cur := stack[len(stack)-1]
stack = stack[:len(stack)-1]
res = append(res, cur.Val)
if cur.Right != nil {
stack = append(stack, cur.Right)
}
if cur.Left != nil {
stack = append(stack, cur.Left)
}
}
return res
}
func inorderTraversal(root *TreeNode) []int {
var res []int
stack := []*TreeNode{}
cur := root
for cur != nil || len(stack) > 0 {
for cur != nil {
stack = append(stack, cur)
cur = cur.Left
}
cur = stack[len(stack)-1]
stack = stack[:len(stack)-1]
res = append(res, cur.Val)
cur = cur.Right
}
return res
}
func postorderTraversal(root *Treecur) []int {
var res []int
if root == nil {
return res
}
stack := []*Treecur{}
stack = append(stack, root)
for len(stack) > 0 {
cur := stack[len(stack)-1]
stack = stack[:len(stack)-1]
res = append([]int{cur.Val}, res...)
if cur.Left != nil {
stack = append(stack, cur.Left)
}
if cur.Right != nil {
stack = append(stack, cur.Right)
}
}
return res
}
146. LRU缓存 LRU Cache
请你设计并实现一个满足 LRU (最近最少使用) 缓存 约束的数据结构。
实现 LRUCache
类:
-
LRUCache(int capacity)
以 正整数 作为容量capacity
初始化 LRU 缓存 -
int get(int key)
如果关键字key
存在于缓存中,则返回关键字的值,否则返回-1
。 -
void put(int key, int value)
如果关键字key
已经存在,则变更其数据值value
;如果不存在,则向缓存中插入该组key-value
。如果插入操作导致关键字数量超过capacity
,则应该 逐出 最久未使用的关键字。
函数 get
和 put
必须以 O(1)
的平均时间复杂度运行。
示例:
输入 ["LRUCache", "put", "put", "get", "put", "get", "put", "get", "get", "get"] [[2], [1, 1], [2, 2], [1], [3, 3], [2], [4, 4], [1], [3], [4]] 输出 [null, null, null, 1, null, -1, null, -1, 3, 4] 解释 LRUCache lRUCache = new LRUCache(2); lRUCache.put(1, 1); // 缓存是 {1=1} lRUCache.put(2, 2); // 缓存是 {1=1, 2=2} lRUCache.get(1); // 返回 1 lRUCache.put(3, 3); // 该操作会使得关键字 2 作废,缓存是 {1=1, 3=3} lRUCache.get(2); // 返回 -1 (未找到) lRUCache.put(4, 4); // 该操作会使得关键字 1 作废,缓存是 {4=4, 3=3} lRUCache.get(1); // 返回 -1 (未找到) lRUCache.get(3); // 返回 3 lRUCache.get(4); // 返回 4
提示:
1
0
0
- 最多调用
2 * 10^5
次get
和put
代码:
type LRUCache struct {
capacity int
cache map[int]*list.Element
list *list.List
}
type pair struct {
key int
value int
}
func Constructor(capacity int) LRUCache {
return LRUCache{
capacity: capacity,
cache: make(map[int]*list.Element),
list: list.New(),
}
}
func (c *LRUCache) Get(key int) int {
if elem, ok := c.cache[key]; ok {
c.list.MoveToFront(elem)
return elem.Value.(*pair).value
}
return -1
}
func (c *LRUCache) Put(key int, value int) {
if elem, ok := c.cache[key]; ok {
elem.Value.(*pair).value = value
c.list.MoveToFront(elem)
} else {
if c.list.Len() == c.capacity {
// remove the least recently used element
tailElem := c.list.Back()
delete(c.cache, tailElem.Value.(*pair).key)
c.list.Remove(tailElem)
}
// insert new element to front
newElem := c.list.PushFront(&pair{key, value})
c.cache[key] = newElem
}
}
输出:
略
🌟 每日一练刷题专栏 🌟
✨ 持续,努力奋斗做强刷题搬运工!
👍 点赞,你的认可是我坚持的动力!
🌟 收藏,你的青睐是我努力的方向!
✎ 评论,你的意见是我进步的财富!
☸ 主页:https://hannyang.blog.csdn.net/
Golang每日一练 专栏
|
|
Python每日一练 专栏
|
|
C/C++每日一练 专栏
|
|
Java每日一练 专栏
|