随着世界经济由工业经济向数字经济转型,数据逐步成为关键的生产要素,企业开始将数据作为一种战略资产进行管理。数据从业务中产生,在IT系统中承载,要对数据进行有效治理,需要业务充分参与,IT系统确保遵从,这是一个非常复杂的系统工程。
数据治理架构
实践证明,企业只有构筑一套企业级的数据治理综合体系,明确关键数据资产的业务管理责任,依赖规范的制度流程机制,构建有效的管理平台及工具,数据的价值才能真正发挥出来。数据治理架构如下图所示。
构筑数据治理体系的过程,即以数据应用为核心打造“良性循环的闭环数据治理管理体系”的过程。各IT系统获取业务活动产生的各类数据后,经过系统的数据治理、管理,不断挖掘、变现数据价值,拓展、深入数据应用场景,指导业务决策,同时在不断应用数据过程中基于发现的数据问题,通过数据治理、管理的过程不断修订,推动业务系统全面升级,真正优化业务流程管理机制及规范,最终构建数据“获取→管理→变现→发现→应对→修正”的闭环管理机制。
以数据应用核心,数据治理平台工具为支撑,在数据治理组织/制度保障下,不断通过数据治理手段,推动实现数据标准化及业务标准化,实现业务、技术、管理、平台的有效联动。
在数据治理综合体系内,数据治理核心模块包括数据治理规划、数据治理职能及数据治理平台工具。
数据治理规划是指数据治理体系与规划、数据治理组织与职责、数据治理制度及流程,是数据治理规范化管理的核心模块;
数据治理职能包括数据标准管理、数据质量管理、数据架构及模型管理、数据开发、元数据管理、主数据管理、数据生命周期管理、数据安全管理八大职能,实际过程中,企业通常会合并管理;
数据治理平台工具包括数据开发平台、数据资产管理平台、数据质量管理平台、数据服务平台,通常数据治理平台工具基于数据治理的阶段功能并不完全一致,实践中平台工具通常综合多方面功能,而不是单平台功能。
三大模块互为动力,数据治理规划指导数据治理职能的全面发挥,数据治理各项职能通过数据治理平台工具协助管理,数据治理平台工具支撑数据治理规划的落地及优化,数据治理规划各层面逐步固化在数据治理平台上,数据治理平台辅助数据治理各项职能的管理,通过数据治理各项职能不断落实和完善数据治理规划,实现组织数字化转型,固化管理机制及流程体系。
未来企业通过构筑数据治理综合体系,逐步建立数据治理机制,完成组织转型,数据治理职能将成为企业管理的重要组成部分,良性循环的管理体系将推动企业实现更广、更深层次的数据应用,数据决策将成为企业人思考的习惯,企业决策将更加科学、有效。
未来企业数据治理蓝图架构如下图所示,业务系统、数据治理及数据应用互为动力,共同推动企业数字化转型的实现。
数据治理模式
数据治理模式是指企业基于不同的数据治理目标,根据企业组织、系统、数据应用的现状,以何种数据治理策略开展数据治理活动。根据袋鼠云8年的实践证明,通常数据治理模式包括三种基本模式。
模式一:自下而上,以数据架构为重,开展数据治理
这种模式重在数据架构,层层向上治理数据,至数据应用层。这种模式从底层数据切入,基于现有数据基础,盘点、建设、治理、应用层层展开,对企业整体的数据思维、数据治理水平要求较高,通常适用于数据量重、业务应用轻大型技术型企业,或政府机构,或新建、自研系统较多的企业。
模式二:自上而下,以明确的数据应用为重,开展数据治理
这种模式即单点应用式,通常以现有应用需求为核心开展数据治理。聚焦各个业务领域的数据应用、数据治理需求,在有需求、有资源、有驱动力的前提下,按需组织推进数据治理工作。只有业务部门的深入参与才能做好数据治理,只有针对业务自身需求进行的治理,才能得到业务部门的认可和支持。
模式二通常围绕数据应用的需求进行数据治理,比如升级架构、更换平台等涉及数据应用迁移时,或聚焦监管、上报类等明确数据应用时,围绕数据应用进行数据治理。
模式二通常适用于数据应用较强、业务部门较为强势、但整体数据认知较弱的企业。这种模式的数据治理切入相对较为简单,实践证明,大部分企业数字化转型初期会这种模式,慢慢探索企业的数据治理道路,这种模式有助于拉齐数据部门、业务部门的认知,提升企业整体数据认知,为未来数据治理的开展提供基石。
模式三:大规划模式,从数据应用规划入手,治理现状,规划未来,基于数据资产的未来开展数据治理
这种模式需要企业全面梳理业务的现状痛点及业务未来畅想,盘现状、规划未来,基于业务现在及未来的需求规划分析应用场景,在应用场景蓝图规划的范围内,全面的梳理数据的现状、规划数据的未来,针对蓝图规划中的数据需求,制定全方位策略。例如哪些新建系统、新购数据源?哪些需要现有数据系统升级,细化、标准化现有数据?哪些数据需求落地可行性较高?
制定全面的规划体系,划分优先级,有节奏、有步骤地实现全面的数据治理。这种模式通常是企业的战略项目,由高层推进开展,对数据、业务协同性要求较高,整个过程涉及系统改造升级、业务流程优化再造,是企业全面升级的过程。
组合模式一:模式一&模式二组合,即全域数据治理+明确应用场景规划。这种模式兼顾底层数据与上层应用,可对冲底层数仓重建的部分风险,同时可有效地阐述数据价值,整体可行性较高。
组合模式二:模式一&模式三组合,即全域数据治理+全面应用场景规划。这种模式从现在、未来的角度全面开展数据治理,业务、数据全面覆盖,返工重建风险小,同时有助于推动业务系统、数据全面升级,业务价值较高,但对组织协同要求高,且成本投入高、耗时久,对执行团队要求高,复合型人才需求大,属于高风险高收益模式,需要企业高战略、高执行的推进落地。
数据治理模式对比
三大数据治理模式开展方式、适用场景、优劣势、资源投入各不相同。
模式一,自下而上,切入方便,成本可控,重架构,但脱离应用,对执行团队架构能力要求较高,成效慢;
模式二,自上而下,目的明确,切入方便,成本可控,重应用,但轻治理,容易造成面子工程,出现重复治理的风险;
模式三,大规划模式,规划的眼光,覆盖业务、数据双层面,重建风险小,聚焦业务,有利于充分挖掘数据价值,但对组织的协同性要求较高,同时需要高质量复合型人才配合团队执行,整体落地风险较大,成本较大。
数据治理三大模式对比如下表所示:
三大数据治理模式各有优劣,而组合模式在某种程度上对冲单一模式的风险,可以更好地满足企业数据治理的需求和目的。企业应基于面临的现状,选择适合的自己的治理模式。
数据治理模式选择
不同的数据治理模式,对企业的数据治理水平、组织协同程度要求不同。
自下而上的模式一是基于底层数据治理的,对数据治理水平要求较高,数据治理水平包括数据基础(数据量、数据质量等)以及数据治理能力,数据治理能力主要体现在数据治理团队专业度以及数据治理体系(组织、制度及流程)完善度。这种模式对组织协同度要求相对较低,主要靠数据治理团队推动进行。
自上而下的模式二是基于明确数据应用进行数据治理的,相较于自下而上的模式一,组织的协同性要求会更高,需要业务部门、数据部门配合实现,但整体以需求为主,对数据治理的水平要求一般。
大规划的模式三既治理现状,又规划未来,对组织协同性及数据治理水平均有极高要求。该模式需要动员企业的业务部门、技术部门、数据部门,同时需要企业各阶层(高层、中层、基层员工)的人员共同配合,全面盘点业务的痛点及未来规划,同时梳理数据现状,规划数据未来,通常为战略项目、高层领导共同将企业数据治理水平推向一个新水平,同时完成数字化组织的转型。
组合模式在组织协同性、数据治理水平上会叠加单一模式的要求,如模式一&模式三的组合模式对组织协同性、数据治理水平要求最高。
各模式对企业的组织协同性、数据治理水平的要求见下图所示,基于各模式对企业组织协同、数据治理水平的要求不同,企业应充分盘点企业的组织现状、数据现状、应用现状,初步评估企业数据治理水平、组织协同度,结合数据治理的目标,评估可行性,选择最佳模式。
企业数据治理是个复杂而漫长的过程,通常在不同的发展阶段,企业选择数据治理模式并不同,基于面对的组织、数据、应用现状,企业需要均衡目标与现状,选择当下最合适的数据治理模式。
企业数据治理并不是一蹴而就的,它需要企业不断地进行规划、治理、监测、优化,通过数据治理不断完善企业的组织、制度、流程管理体系,同时不断提升企业数据治理管理水平,包括数据标准、数据质量、数据架构及模型、数据应用等模块的管理水平提升。
数据治理是一个持续循环的过程,需通过不断地改进提升及完善。PDCA循环不是在同一水平上循环,而是呈阶梯式推动上升,每次循环将推进企业的数据治理水平及组织协同性向新的、更高的层级进阶,最终实现企业数字化转型。
数据治理实施路径
企业数据治理实施路径通常包含三个阶段。
第一阶段:起步阶段,业务运营数字化阶段。
这个阶段主要是梳理企业面临的现状,响应痛点,探索业务场景化。企业逐步开始由信息化向数字化转型,这个阶段企业会重新审视原有的数据治理策略,重构数据治理战略及实现路径,逐步开始搭建数据治理框架、数据治理体系框架,升级原有的数据处理、应用模式,搭建大数据平台,构建大数据采集、汇集、存储、计算、服务的基础能力,逐步整合各系统的数据,打破数据孤岛,沉淀数据资产,探索业务场景化。
第二阶段:深入拓展阶段,数据赋能常态化阶段。
这个阶段数据应用成为重点,企业开始深挖数据价值,提高数据应用覆盖。数据应用的范围,由核心KPI指标的实现,逐步覆盖全部核心业务,搭建完善的分析框架和洞察体系,不断地提升业务决策质量。
大数据平台持续发挥大数据处理的能力,企业纳入更多、更广的数据内容,不断扩大数据应用的广度及深度,初步形成企业的数据资产地图,数据标准体系逐步搭建,数据应用的效率大大提升,初步完成由“经验主义”向“数据主义”的转型,数据决策成为企业决策主要决策方式。
这个阶段,企业开始全面建立数据管理权限体系,完善数据治理机制,优化数据治理流程及制度体系,由原有的“粗放式”管理升级为“精细化”管理,数据质量不断提升,企业数据管理能力升级,逐步通过数据质量平台、数据资产平台、数据治理平台工具等实现智能管理,企业数据思维认知全面提升。
第三阶段:智能应用阶段,运营决策智慧化阶段。 这个阶段企业实现洞策合一,智慧场景应用成为常态,全面完成数字化转型,探索数字业务,开启新篇章。这个阶段以智能应用为主,AI赋能成为常态,企业不断地挖掘数据的价值、激发创新,开始为企业战略性分析提供准确的数据依赖,在这个阶段,有些企业甚至在原有商业模式上,激发新的业务模式。
数据管理层面,由数据治理体系建设逐步向数据治理体系优化进阶,完善机制、流程,进一步细化数据管理职责; 数据资产层面,完成全域数据资产建设,构建强壮的数据模型体系,完成企业数据标准建设,不断完善数据资产体系; 平台工具层面,大数据平台能力逐步向算法能力转移,智能推荐算法模型开发成为常态化的需求,数据治理平台逐步完善功能,协助企业智能化数据质量、数据标准、数据资产及主数据等模块,企业真正进入运营决策智慧化阶段。
《数栈产品白皮书》:https://www.dtstack.com/resources/1004?src=szsm
《数据治理行业实践白皮书》下载地址:https://www.dtstack.com/resources/1001?src=szsm 想了解或咨询更多有关袋鼠云大数据产品、行业解决方案、客户案例的朋友,浏览袋鼠云官网:https://www.dtstack.com/?src=szkyzg
同时,欢迎对大数据开源项目有兴趣的同学加入「袋鼠云开源框架钉钉技术qun」,交流最新开源技术信息,qun号码:30537511,项目地址:https://github.com/DTStack